Constraint Random Verification (CRV) is a technique for generating randomized test cases with specific constraints to ensure that the generated input stimuli meet certain design requirements.
In CRV, a set of constraints that capture the requirements of the design, such as data ranges, timing requirements, and interface protocols are defined. The testbench then generates a set of input stimuli that satisfies these constraints. The generated test cases can then be used to verify the design's functionality and performance.
CRV is a popular verification technique because it can generate a large number of randomized test cases that cover a wide range of scenarios. By using CRV, a verification engineer can quickly identify potential design bugs that may not be found using other verification techniques.
Directed verification is a type of functional verification in which the test cases are created to exercise specific features or functions of a digital design. The test cases are designed based on the knowledge of the design specification and the intended behavior of the design. Directed verification is often used in the early stages of the verification process, before random or stress testing is performed, as it can help to quickly identify bugs and ensure that the basic functionality of the design is correct.
There are several techniques used in digital design verification, including:
- Functional Simulation: Simulation involves running the digital design on a computer or simulator to validate its functionality. The simulation environment may include various inputs, such as test vectors, to ensure that the design behaves as expected.
A self-checking testbench is a type of testbench that is designed to automatically check the correctness of a digital design's output, without the need for manual intervention. In a self-checking testbench, the testbench itself verifies the design's output, rather than relying on a separate verification tool or manual inspection. Here's an example of a simple self-checking testbench:
A linear random testbench is a type of testbench that uses random input stimuli to test a digital design. It is called "linear" because the input stimuli are generated in a sequential, linear fashion, as opposed to a more complex state machine-based approach. Here's an example of a simple linear random testbench: