This session is a real example of how design and verification happens in the real industry. We'll go through the design specification, write a test plan that details how the design will be tested, develop a UVM testbench structure and verify the design.
Design
This is a simple pattern detector written in Verilog to identify a pattern in a stream of input values. On every clock, there is a new input to the design and when it matches the pattern '1011', the output out will be set to 1. For this purpose, the design is implemented as a state machine which moves through different stages as it progresses through pattern identification sequence.
Here is an example of how a SystemVerilog testbench can be constructed to verify functionality of a simple adder. Remember that the goal here is to develop a modular and scalable testbench architecture with all the standard verification components in a testbench.
You can also write Verilog code for testing such simple circuits, but bigger and more complex designs typically require a scalable testbench architecture and this is an example of how to build a scalable testbench. Different designs require different driver, monitor and scoreboard implementation that depends on design specifics.
Design
// An adder is combinational logic and does not
// have a clock
module my_adder (adder_if _if);
always_comb begin
if (_if.rstn) begin
_if.sum <= 0;
_if.carry <= 0;
end else begin
{_if.carry, _if.sum} <= _if.a + _if.b;
end
end
endmodule
Transaction Object
// To verify that the adder adds, we also need to check that it
// does not add when rstn is 0, and hence rstn should also be
// randomized along with a and b.
class Packet;
rand bit rstn;
rand bit[7:0] a;
rand bit[7:0] b;
bit [7:0] sum;
bit carry;
// Print contents of the data packet
function void print(string tag="");
$display ("T=%0t %s a=0x%0h b=0x%0h sum=0x%0h carry=0x%0h", $time, tag, a, b, sum, carry);
endfunction
// This is a utility function to allow copying contents in
// one Packet variable to another.
function void copy(Packet tmp);
this.a = tmp.a;
this.b = tmp.b;
this.rstn = tmp.rstn;
this.sum = tmp.sum;
this.carry = tmp.carry;
endfunction
endclass
Driver
class driver;
virtual adder_if m_adder_vif;
virtual clk_if m_clk_vif;
event drv_done;
mailbox drv_mbx;
task run();
$display ("T=%0t [Driver] starting ...", $time);
// Try to get a new transaction every time and then assign
// packet contents to the interface. But do this only if the
// design is ready to accept new transactions
forever begin
Packet item;
$display ("T=%0t [Driver] waiting for item ...", $time);
drv_mbx.get(item);
@ (posedge m_clk_vif.tb_clk);
item.print("Driver");
m_adder_vif.rstn <= item.rstn;
m_adder_vif.a <= item.a;
m_adder_vif.b <= item.b;
->drv_done;
end
endtask
endclass
Monitor
// The monitor has a virtual interface handle with which it can monitor
// the events happening on the interface. It sees new transactions and then
// captures information into a packet and sends it to the scoreboard
// using another mailbox.
class monitor;
virtual adder_if m_adder_vif;
virtual clk_if m_clk_vif;
mailbox scb_mbx; // Mailbox connected to scoreboard
task run();
$display ("T=%0t [Monitor] starting ...", $time);
// Check forever at every clock edge to see if there is a
// valid transaction and if yes, capture info into a class
// object and send it to the scoreboard when the transaction
// is over.
forever begin
Packet m_pkt = new();
@(posedge m_clk_vif.tb_clk);
#1;
m_pkt.a = m_adder_vif.a;
m_pkt.b = m_adder_vif.b;
m_pkt.rstn = m_adder_vif.rstn;
m_pkt.sum = m_adder_vif.sum;
m_pkt.carry = m_adder_vif.carry;
m_pkt.print("Monitor");
scb_mbx.put(m_pkt);
end
endtask
endclass
Scoreboard
// The scoreboard is responsible to check data integrity. Since the design
// simple adds inputs to give sum and carry, scoreboard helps to check if the
// output has changed for given set of inputs based on expected logic
class scoreboard;
mailbox scb_mbx;
task run();
forever begin
Packet item, ref_item;
scb_mbx.get(item);
item.print("Scoreboard");
// Copy contents from received packet into a new packet so
// just to get a and b.
ref_item = new();
ref_item.copy(item);
// Let us calculate the expected values in carry and sum
if (ref_item.rstn)
{ref_item.carry, ref_item.sum} = ref_item.a + ref_item.b;
else
{ref_item.carry, ref_item.sum} = 0;
// Now, carry and sum outputs in the reference variable can be compared
// with those in the received packet
if (ref_item.carry != item.carry) begin
$display("[%0t] Scoreboard Error! Carry mismatch ref_item=0x%0h item=0x%0h", $time, ref_item.carry, item.carry);
end else begin
$display("[%0t] Scoreboard Pass! Carry match ref_item=0x%0h item=0x%0h", $time, ref_item.carry, item.carry);
end
if (ref_item.sum != item.sum) begin
$display("[%0t] Scoreboard Error! Sum mismatch ref_item=0x%0h item=0x%0h", $time, ref_item.sum, item.sum);
end else begin
$display("[%0t] Scoreboard Pass! Sum match ref_item=0x%0h item=0x%0h", $time, ref_item.sum, item.sum);
end
end
endtask
endclass
Generator
// Sometimes we simply need to generate N random transactions to random
// locations so a generator would be useful to do just that. In this case
// loop determines how many transactions need to be sent
class generator;
int loop = 10;
event drv_done;
mailbox drv_mbx;
task run();
for (int i = 0; i < loop; i++) begin
Packet item = new;
item.randomize();
$display ("T=%0t [Generator] Loop:%0d/%0d create next item", $time, i+1, loop);
drv_mbx.put(item);
$display ("T=%0t [Generator] Wait for driver to be done", $time);
@(drv_done);
end
endtask
endclass
Environment
// Lets say that the environment class was already there, and generator is
// a new component that needs to be included in the ENV.
class env;
generator g0; // Generate transactions
driver d0; // Driver to design
monitor m0; // Monitor from design
scoreboard s0; // Scoreboard connected to monitor
mailbox scb_mbx; // Top level mailbox for SCB <-> MON
virtual adder_if m_adder_vif; // Virtual interface handle
virtual clk_if m_clk_vif; // TB clk
event drv_done;
mailbox drv_mbx;
function new();
d0 = new;
m0 = new;
s0 = new;
scb_mbx = new();
g0 = new;
drv_mbx = new;
endfunction
virtual task run();
// Connect virtual interface handles
d0.m_adder_vif = m_adder_vif;
m0.m_adder_vif = m_adder_vif;
d0.m_clk_vif = m_clk_vif;
m0.m_clk_vif = m_clk_vif;
// Connect mailboxes between each component
d0.drv_mbx = drv_mbx;
g0.drv_mbx = drv_mbx;
m0.scb_mbx = scb_mbx;
s0.scb_mbx = scb_mbx;
// Connect event handles
d0.drv_done = drv_done;
g0.drv_done = drv_done;
// Start all components - a fork join_any is used because
// the stimulus is generated by the generator and we want the
// simulation to exit only when the generator has finished
// creating all transactions. Until then all other components
// have to run in the background.
fork
s0.run();
d0.run();
m0.run();
g0.run();
join_any
endtask
endclass
Test
// The test can instantiate any environment. In this test, we are using
// an environment without the generator and hence the stimulus should be
// written in the test.
class test;
env e0;
mailbox drv_mbx;
function new();
drv_mbx = new();
e0 = new();
endfunction
virtual task run();
e0.d0.drv_mbx = drv_mbx;
e0.run();
endtask
endclass
Interface
// Adder interface contains all signals that the adder requires
// to operate
interface adder_if();
logic rstn;
logic [7:0] a;
logic [7:0] b;
logic [7:0] sum;
logic carry;
endinterface
// Although an adder does not have a clock, let us create a mock clock
// used in the testbench to synchronize when value is driven and when
// value is sampled. Typically combinational logic is used between
// sequential elements like FF in a real circuit. So, let us assume
// that inputs to the adder is provided at some posedge clock. But because
// the design does not have clock in its input, we will keep this clock
// in a separate interface that is available only to testbench components
interface clk_if();
logic tb_clk;
initial tb_clk <= 0;
always #10 tb_clk = ~tb_clk;
endinterface
Testbench Top
module tb;
bit tb_clk;
clk_if m_clk_if ();
adder_if m_adder_if ();
my_adder u0 (m_adder_if);
initial begin
test t0;
t0 = new;
t0.e0.m_adder_vif = m_adder_if;
t0.e0.m_clk_vif = m_clk_if;
t0.run();
// Once the main stimulus is over, wait for some time
// until all transactions are finished and then end
// simulation. Note that $finish is required because
// there are components that are running forever in
// the background like clk, monitor, driver, etc
#50 $finish;
end
endmodule

ncsim> run T=0 [Driver] starting ... T=0 [Driver] waiting for item ... T=0 [Monitor] starting ... T=0 [Generator] Loop:1/5 create next item T=0 [Generator] Wait for driver to be done T=10 Driver a=0x16 b=0x11 sum=0x0 carry=0x0 T=10 [Driver] waiting for item ... T=10 [Generator] Loop:2/5 create next item T=10 [Generator] Wait for driver to be done T=11 Monitor a=0x16 b=0x11 sum=0x0 carry=0x0 T=11 Scoreboard a=0x16 b=0x11 sum=0x0 carry=0x0 [11] Scoreboard Pass! Carry match ref_item=0x0 item=0x0 [11] Scoreboard Pass! Sum match ref_item=0x0 item=0x0 T=30 Driver a=0xde b=0x6 sum=0x0 carry=0x0 T=30 [Driver] waiting for item ... T=30 [Generator] Loop:3/5 create next item T=30 [Generator] Wait for driver to be done T=31 Monitor a=0xde b=0x6 sum=0x0 carry=0x0 T=31 Scoreboard a=0xde b=0x6 sum=0x0 carry=0x0 [31] Scoreboard Pass! Carry match ref_item=0x0 item=0x0 [31] Scoreboard Pass! Sum match ref_item=0x0 item=0x0 T=50 Driver a=0xb1 b=0xbd sum=0x0 carry=0x0 T=50 [Driver] waiting for item ... T=50 [Generator] Loop:4/5 create next item T=50 [Generator] Wait for driver to be done T=51 Monitor a=0xb1 b=0xbd sum=0x0 carry=0x0 T=51 Scoreboard a=0xb1 b=0xbd sum=0x0 carry=0x0 [51] Scoreboard Pass! Carry match ref_item=0x0 item=0x0 [51] Scoreboard Pass! Sum match ref_item=0x0 item=0x0 T=70 Driver a=0x63 b=0xfb sum=0x0 carry=0x0 T=70 [Driver] waiting for item ... T=70 [Generator] Loop:5/5 create next item T=70 [Generator] Wait for driver to be done T=71 Monitor a=0x63 b=0xfb sum=0x5e carry=0x1 T=71 Scoreboard a=0x63 b=0xfb sum=0x5e carry=0x1 [71] Scoreboard Pass! Carry match ref_item=0x1 item=0x1 [71] Scoreboard Pass! Sum match ref_item=0x5e item=0x5e T=90 Driver a=0x71 b=0xbc sum=0x0 carry=0x0 T=90 [Driver] waiting for item ... T=91 Monitor a=0x71 b=0xbc sum=0x0 carry=0x0 T=91 Scoreboard a=0x71 b=0xbc sum=0x0 carry=0x0 [91] Scoreboard Pass! Carry match ref_item=0x0 item=0x0 [91] Scoreboard Pass! Sum match ref_item=0x0 item=0x0 T=111 Monitor a=0x71 b=0xbc sum=0x0 carry=0x0 T=111 Scoreboard a=0x71 b=0xbc sum=0x0 carry=0x0 [111] Scoreboard Pass! Carry match ref_item=0x0 item=0x0 [111] Scoreboard Pass! Sum match ref_item=0x0 item=0x0 T=131 Monitor a=0x71 b=0xbc sum=0x0 carry=0x0 T=131 Scoreboard a=0x71 b=0xbc sum=0x0 carry=0x0 [131] Scoreboard Pass! Carry match ref_item=0x0 item=0x0 [131] Scoreboard Pass! Sum match ref_item=0x0 item=0x0 Simulation complete via $finish(1) at time 140 NS + 0 ./testbench.sv:265 #50 $finish;
Buggy Design
Although the previous simulation showed everything as pass, how do we know if there is a bug in the checker ? Let us introduce a bug in the design to see if the checker fails.
module my_adder (adder_if _if);
always_comb begin
// Let sum and carry be reset when rstn is 1 instead of 0
// A simple but yet possible design bug
if (_if.rstn) begin
_if.sum <= 0;
_if.carry <= 0;
end else begin
{_if.carry, _if.sum} <= _if.a + _if.b;
end
end
endmodule
See that the checker now reports an error which proves that the checker is implemented correctly.


ncsim> run T=0 [Driver] starting ... T=0 [Driver] waiting for item ... T=0 [Monitor] starting ... T=0 [Generator] Loop:1/5 create next item T=0 [Generator] Wait for driver to be done T=10 Driver a=0x16 b=0x11 sum=0x0 carry=0x0 T=10 [Driver] waiting for item ... T=10 [Generator] Loop:2/5 create next item T=10 [Generator] Wait for driver to be done T=11 Monitor a=0x16 b=0x11 sum=0x27 carry=0x0 T=11 Scoreboard a=0x16 b=0x11 sum=0x27 carry=0x0 [11] Scoreboard Pass! Carry match ref_item=0x0 item=0x0 [11] Scoreboard Error! Sum mismatch ref_item=0x0 item=0x27 T=30 Driver a=0xde b=0x6 sum=0x0 carry=0x0 T=30 [Driver] waiting for item ... T=30 [Generator] Loop:3/5 create next item T=30 [Generator] Wait for driver to be done T=31 Monitor a=0xde b=0x6 sum=0xe4 carry=0x0 T=31 Scoreboard a=0xde b=0x6 sum=0xe4 carry=0x0 [31] Scoreboard Pass! Carry match ref_item=0x0 item=0x0 [31] Scoreboard Error! Sum mismatch ref_item=0x0 item=0xe4 T=50 Driver a=0xb1 b=0xbd sum=0x0 carry=0x0 T=50 [Driver] waiting for item ... T=50 [Generator] Loop:4/5 create next item T=50 [Generator] Wait for driver to be done T=51 Monitor a=0xb1 b=0xbd sum=0x6e carry=0x1 T=51 Scoreboard a=0xb1 b=0xbd sum=0x6e carry=0x1 [51] Scoreboard Error! Carry mismatch ref_item=0x0 item=0x1 [51] Scoreboard Error! Sum mismatch ref_item=0x0 item=0x6e T=70 Driver a=0x63 b=0xfb sum=0x0 carry=0x0 T=70 [Driver] waiting for item ... T=70 [Generator] Loop:5/5 create next item T=70 [Generator] Wait for driver to be done T=71 Monitor a=0x63 b=0xfb sum=0x0 carry=0x0 T=71 Scoreboard a=0x63 b=0xfb sum=0x0 carry=0x0 [71] Scoreboard Error! Carry mismatch ref_item=0x1 item=0x0 [71] Scoreboard Error! Sum mismatch ref_item=0x5e item=0x0 T=90 Driver a=0x71 b=0xbc sum=0x0 carry=0x0 T=90 [Driver] waiting for item ... T=91 Monitor a=0x71 b=0xbc sum=0x2d carry=0x1 T=91 Scoreboard a=0x71 b=0xbc sum=0x2d carry=0x1 [91] Scoreboard Error! Carry mismatch ref_item=0x0 item=0x1 [91] Scoreboard Error! Sum mismatch ref_item=0x0 item=0x2d T=111 Monitor a=0x71 b=0xbc sum=0x2d carry=0x1 T=111 Scoreboard a=0x71 b=0xbc sum=0x2d carry=0x1 [111] Scoreboard Error! Carry mismatch ref_item=0x0 item=0x1 [111] Scoreboard Error! Sum mismatch ref_item=0x0 item=0x2d T=131 Monitor a=0x71 b=0xbc sum=0x2d carry=0x1 T=131 Scoreboard a=0x71 b=0xbc sum=0x2d carry=0x1 [131] Scoreboard Error! Carry mismatch ref_item=0x0 item=0x1 [131] Scoreboard Error! Sum mismatch ref_item=0x0 item=0x2d Simulation complete via $finish(1) at time 140 NS + 0 ./testbench.sv:265 #50 $finish;
A previous article showed examples of using a uvm_blocking_get_port
TLM port that was blocking in nature where the receiver gets stalled until the sender finishes with the get
task.
Similarly, UVM TLM also has a non-blocking method of type uvm_nonblocking_get_port
where the sender has to use try_get
to see if the get was successful or can_get
method to see if the sender is ready to start a transfer. Like before, the UVM TLM non-blocking get port should ultimately be connected to a non-blocking get implementation port.
UVM TLM Nonblocking Get Example
A class called Packet is defined below to act as the data item that will be transferred from one component to another. This class object will have two random variables that can be randomized before sending.
// Create a class data object that can be sent from one
// component to another
class Packet extends uvm_object;
rand bit[7:0] addr;
rand bit[7:0] data;
`uvm_object_utils_begin(Packet)
`uvm_field_int(addr, UVM_ALL_ON)
`uvm_field_int(data, UVM_ALL_ON)
`uvm_object_utils_end
function new(string name = "Packet");
super.new(name);
endfunction
endclass
1. Create receiver class with a port of type uvm_nonblocking_get_port
A class called componentB is created which has a uvm_nonblocking_get_port
parameterized to accept a data object of type Packet. The port has to be instantiated with the new()
method preferably in the build_phase
of the same component.
In this example, a class object of type Packet is received via the get_port handle by calling the try_get
method. Many such packets can be received using a simple loop controlled by a configurable variable. The try_get
function should ideally return 1 if the transfer was successful and 0 if it failed and should be provided by the sender which implements the function.
class componentB extends uvm_component;
`uvm_component_utils (componentB)
// Create a get_port to request for data from componentA
uvm_nonblocking_get_port #(Packet) m_get_port;
int m_num_tx = 2;
function new (string name, uvm_component parent);
super.new (name, parent);
endfunction
virtual function void build_phase (uvm_phase phase);
super.build_phase (phase);
m_get_port = new ("m_get_port", this);
endfunction
virtual task run_phase (uvm_phase phase);
Packet pkt;
phase.raise_objection(this);
// Try to get a transaction which does not consume simulation time
// as try_get() is a function
repeat (m_num_tx) begin
if (m_get_port.try_get(pkt))
`uvm_info ("COMPB", "ComponentA just gave me the packet", UVM_LOW)
else
`uvm_info ("COMPB", "ComponentA did not give packet", UVM_LOW)
pkt.print (uvm_default_line_printer);
end
phase.drop_objection(this);
endtask
endclass
3. Create sender class that implements the get
methodThe sender class needs to define an implementation port using uvm_nonblocking_get_imp
. Since the port is nonblocking in nature, the try_get
implementation is a function which has to be defined by this component.
class componentA extends uvm_component;
`uvm_component_utils (componentA)
uvm_nonblocking_get_imp #(Packet, componentA) m_get_imp;
function new (string name, uvm_component parent);
super.new (name, parent);
endfunction
virtual function void build_phase (uvm_phase phase);
super.build_phase (phase);
m_get_imp = new ("m_get_imp", this);
endfunction
virtual function bit try_get (output Packet pkt);
pkt = new();
assert (pkt.randomize());
`uvm_info ("COMPA", "ComponentB has requested for a packet", UVM_LOW)
pkt.print (uvm_default_line_printer);
return 1;
endfunction
virtual function bit can_get();
endfunction
endclass

The connection between a port and its implementation has to be done at a higher hierarchical level. Since both components are instantiated directly within the test class in this example, the connection between them can be done during the connect_phase
of the test. If these two components were instantiated in another component or environment, they have to be connected during the connect_phase
of that component or environment.
class my_test extends uvm_test;
`uvm_component_utils (my_test)
componentA compA;
componentB compB;
function new (string name = "my_test", uvm_component parent = null);
super.new (name, parent);
endfunction
// Create objects of both components, set number of transfers
virtual function void build_phase (uvm_phase phase);
super.build_phase (phase);
compA = componentA::type_id::create ("compA", this);
compB = componentB::type_id::create ("compB", this);
endfunction
// Connection between componentA and componentB is done here
virtual function void connect_phase (uvm_phase phase);
compB.m_get_port.connect (compA.m_get_imp);
endfunction
virtual function void end_of_elaboration_phase(uvm_phase phase);
super.end_of_elaboration_phase(phase);
uvm_top.print_topology();
endfunction
endclass
UVM_INFO @ 0: reporter [RNTST] Running test my_test... UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_root.svh(579) @ 0: reporter [UVMTOP] UVM testbench topology: ----------------------------------------------------- Name Type Size Value ----------------------------------------------------- uvm_test_top my_test - @1836 compA componentA - @1905 m_get_imp uvm_nonblocking_get_imp - @1971 compB componentB - @1936 m_get_port uvm_nonblocking_get_port - @2010 ----------------------------------------------------- UVM_INFO testbench.sv(97) @ 0: uvm_test_top.compA [COMPA] ComponentB has requested for a packet Packet: (Packet@1903) { addr: 'he8 data: 'hc5 } UVM_INFO testbench.sv(67) @ 0: uvm_test_top.compB [COMPB] ComponentA just gave me the packet Packet: (Packet@1903) { addr: 'he8 data: 'hc5 } UVM_INFO testbench.sv(97) @ 0: uvm_test_top.compA [COMPA] ComponentB has requested for a packet Packet: (Packet@2058) { addr: 'hd6 data: 'hd } UVM_INFO testbench.sv(67) @ 0: uvm_test_top.compB [COMPB] ComponentA just gave me the packet Packet: (Packet@2058) { addr: 'hd6 data: 'hd } UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_objection.svh(1271) @ 0: reporter [TEST_DONE] 'run' phase is ready to proceed to the 'extract' phase UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_report_server.svh(847) @ 0: reporter [UVM/REPORT/SERVER] --- UVM Report Summary ---
UVM TLM can_get Example
Instead of directly trying to get a packet, the receiver can first query to see if the sender is ready or not with can_get
function and then get the packet.
class componentB extends uvm_component;
`uvm_component_utils (componentB)
// Create a get_port to request for data from componentA
uvm_nonblocking_get_port #(Packet) m_get_port;
int m_num_tx = 2;
function new (string name, uvm_component parent);
super.new (name, parent);
endfunction
virtual function void build_phase (uvm_phase phase);
super.build_phase (phase);
m_get_port = new ("m_get_port", this);
endfunction
virtual task run_phase (uvm_phase phase);
Packet pkt;
phase.raise_objection(this);
// Try to get a transaction which does not consume simulation time
// as try_get() is a function
repeat (m_num_tx) begin
while (!m_get_port.can_get()) begin
#10 `uvm_info("COMPB", $sformatf("See if can_get() is ready"), UVM_LOW)
end
`uvm_info("COMPB", $sformatf("COMPA ready, get packet now"), UVM_LOW)
m_get_port.try_get(pkt);
pkt.print (uvm_default_line_printer);
end
phase.drop_objection(this);
endtask
endclass
The can_get
function in componentA is set to return a random value in this example to model readiness of the receiver.
class componentA extends uvm_component;
`uvm_component_utils (componentA)
uvm_nonblocking_get_imp #(Packet, componentA) m_get_imp;
// Rest of the code remains same
virtual function bit try_get (output Packet pkt);
pkt = new();
assert (pkt.randomize());
`uvm_info ("COMPA", "ComponentB has requested for a packet", UVM_LOW)
pkt.print (uvm_default_line_printer);
return 1;
endfunction
virtual function bit can_get();
bit ready;
std::randomize(ready) with { ready dist {0:/70, 1:/30}; };
return ready;
endfunction
endclass
UVM_INFO @ 0: reporter [RNTST] Running test my_test... UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_root.svh(579) @ 0: reporter [UVMTOP] UVM testbench topology: ----------------------------------------------------- Name Type Size Value ----------------------------------------------------- uvm_test_top my_test - @1837 compA componentA - @1906 m_get_imp uvm_nonblocking_get_imp - @1972 compB componentB - @1937 m_get_port uvm_nonblocking_get_port - @2011 ----------------------------------------------------- UVM_INFO testbench.sv(60) @ 10: uvm_test_top.compB [COMPB] See if can_get() is ready UVM_INFO testbench.sv(60) @ 20: uvm_test_top.compB [COMPB] See if can_get() is ready UVM_INFO testbench.sv(60) @ 30: uvm_test_top.compB [COMPB] See if can_get() is ready UVM_INFO testbench.sv(62) @ 30: uvm_test_top.compB [COMPB] COMPA ready, get packet now UVM_INFO testbench.sv(97) @ 30: uvm_test_top.compA [COMPA] ComponentB has requested for a packet Packet: (Packet@2065) { addr: 'h8c data: 'h99 } Packet: (Packet@2065) { addr: 'h8c data: 'h99 } UVM_INFO testbench.sv(62) @ 30: uvm_test_top.compB [COMPB] COMPA ready, get packet now UVM_INFO testbench.sv(97) @ 30: uvm_test_top.compA [COMPA] ComponentB has requested for a packet Packet: (Packet@2095) { addr: 'h97 data: 'hb8 } Packet: (Packet@2095) { addr: 'h97 data: 'hb8 } UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_objection.svh(1271) @ 30: reporter [TEST_DONE] 'run' phase is ready to proceed to the 'extract' phase UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_report_server.svh(847) @ 30: reporter [UVM/REPORT/SERVER] --- UVM Report Summary ---
UVM TLM ports and exports are also used to send transaction objects cross different levels of testbench hierarchy.
Ports shall be used to initiate and forward packets to the top layer of the hierarchy. Exports shall be used to accept and forward packets from the top layer to destination. Implementation ports shall be used to define the put
method at the target. Shown below are a few examples that use ports, exports and implementation for components at different hierarchy levels.
Port to Port to Export to Imp
subCompA is a subcomponent within componentA that is trying to send transactions to another subcomponent called subCompB in componentB. To maintain flexibility and portability of code, it is recommended to allow subCompA to send data to componentA which should then forward them to the top layer of the hierarchy. componentB shall accept the transaction and forward it to subCompB.

A class called Packet is defined below to act as the data item that will be transferred from one component to another. This class object will have two random variables that can be randomized before sending.
// Create a class data object that can be sent from one
// component to another
class Packet extends uvm_object;
rand bit[7:0] addr;
rand bit[7:0] data;
`uvm_object_utils_begin(Packet)
`uvm_field_int(addr, UVM_ALL_ON)
`uvm_field_int(data, UVM_ALL_ON)
`uvm_object_utils_end
function new(string name = "Packet");
super.new(name);
endfunction
endclass
Subcomponent A
class subCompA extends uvm_component;
`uvm_component_utils (subCompA)
function new(string name, uvm_component parent);
super.new(name, parent);
endfunction
uvm_blocking_put_port #(Packet) m_put_port;
int m_num_tx=2;
virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
m_put_port = new ("m_put_port", this);
endfunction
// Create a packet, randomize it and send it through the port
// Note that put() is a method defined by the receiving component
// Repeat these steps N times to send N packets
virtual task run_phase (uvm_phase phase);
phase.raise_objection(this);
repeat (m_num_tx) begin
Packet pkt = Packet::type_id::create ("pkt");
assert(pkt.randomize ());
// Print the packet to be displayed in log
`uvm_info ("SUBCOMPA", "Packet sent to subCompB", UVM_LOW)
pkt.print (uvm_default_line_printer);
// Call the TLM put() method of put_port class and pass packet as argument
m_put_port.put (pkt);
end
phase.drop_objection(this);
endtask
endclass
Component A
class componentA extends uvm_component;
`uvm_component_utils (componentA)
function new (string name = "componentA", uvm_component parent= null);
super.new (name, parent);
endfunction
subCompA m_subcomp_A;
uvm_blocking_put_port #(Packet) m_put_port;
virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
m_subcomp_A = subCompA::type_id::create("m_subcomp_A", this);
m_put_port = new ("m_put_port", this);
endfunction
// Connection with subCompA
virtual function void connect_phase(uvm_phase phase);
super.connect_phase(phase);
m_subcomp_A.m_put_port.connect(this.m_put_port);
endfunction
endclass
Component B
class componentB extends uvm_component;
`uvm_component_utils (componentB)
function new(string name, uvm_component parent);
super.new(name, parent);
endfunction
subCompB m_subcomp_B;
uvm_blocking_put_export#(Packet) m_put_export;
virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
m_subcomp_B = subCompB::type_id::create("m_subcomp_B", this);
m_put_export = new("m_put_export", this);
endfunction
// Connection with subCompB
virtual function void connect_phase(uvm_phase phase);
m_put_export.connect(m_subcomp_B.m_put_imp);
endfunction
endclass
Subcomponent B
class subCompB extends uvm_component;
`uvm_component_utils (subCompB)
function new (string name = "subCompB", uvm_component parent = null);
super.new (name, parent);
endfunction
// Mention type of transaction, and type of class that implements the put ()
uvm_blocking_put_imp #(Packet, subCompB) m_put_imp;
virtual function void build_phase (uvm_phase phase);
super.build_phase (phase);
m_put_imp = new ("m_put_imp", this);
endfunction
// Implementation of the 'put()' method in this case simply prints it.
virtual task put (Packet pkt);
`uvm_info ("SUBCOMPB", "Packet received from subCompA", UVM_LOW)
pkt.print(uvm_default_line_printer);
endtask
endclass
class my_test extends uvm_test;
`uvm_component_utils (my_test)
componentA compA;
componentB compB;
function new (string name = "my_test", uvm_component parent = null);
super.new (name, parent);
endfunction
// Create objects of both components, set number of transfers
virtual function void build_phase (uvm_phase phase);
super.build_phase (phase);
compA = componentA::type_id::create ("compA", this);
compB = componentB::type_id::create ("compB", this);
endfunction
// Connection between componentA and componentB is done here
virtual function void connect_phase (uvm_phase phase);
compA.m_put_port.connect (compB.m_put_export);
endfunction
virtual function void end_of_elaboration_phase(uvm_phase phase);
super.end_of_elaboration_phase(phase);
uvm_top.print_topology();
endfunction
endclass
UVM_INFO @ 0: reporter [RNTST] Running test my_test... UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_root.svh(579) @ 0: reporter [UVMTOP] UVM testbench topology: ------------------------------------------------------ Name Type Size Value ------------------------------------------------------ uvm_test_top my_test - @1842 compA componentA - @1911 m_put_port uvm_blocking_put_port - @2008 m_subcomp_A subCompA - @1974 m_put_port uvm_blocking_put_port - @2047 compB componentB - @1942 m_put_export uvm_blocking_put_export - @2115 m_subcomp_B subCompB - @2081 m_put_imp uvm_blocking_put_imp - @2152 ------------------------------------------------------ UVM_INFO testbench.sv(71) @ 0: uvm_test_top.compA.m_subcomp_A [SUBCOMPA] Packet sent to subCompB pkt: (Packet@2191) { addr: 'h24 data: 'h31 } UVM_INFO testbench.sv(151) @ 0: uvm_test_top.compB.m_subcomp_B [SUBCOMPB] Packet received from subCompA pkt: (Packet@2191) { addr: 'h24 data: 'h31 } UVM_INFO testbench.sv(71) @ 0: uvm_test_top.compA.m_subcomp_A [SUBCOMPA] Packet sent to subCompB pkt: (Packet@2209) { addr: 'h9a data: 'hfb } UVM_INFO testbench.sv(151) @ 0: uvm_test_top.compB.m_subcomp_B [SUBCOMPB] Packet received from subCompA pkt: (Packet@2209) { addr: 'h9a data: 'hfb } UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_objection.svh(1271) @ 0: reporter [TEST_DONE] 'run' phase is ready to proceed to the 'extract' phase UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_report_server.svh(847) @ 0: reporter [UVM/REPORT/SERVER] --- UVM Report Summary ---
Port to Port to Imp
In this example componentA forwards the packet from subCompA to the destination componentB. The only difference is that componentB is the target and hence should define the implementation port instead of an export.

// componentB shall implement "put" and there's no subCompB
class componentB extends uvm_component;
`uvm_component_utils (componentB)
function new(string name, uvm_component parent);
super.new(name, parent);
endfunction
uvm_blocking_put_imp#(Packet, componentB) m_put_imp;
virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
m_put_imp = new("m_put_imp", this);
endfunction
// Implementation of the 'put()' method in this case simply prints it.
virtual task put (Packet pkt);
`uvm_info ("COMPB", "Packet received from subCompA", UVM_LOW)
pkt.print(uvm_default_line_printer);
endtask
endclass
UVM_INFO @ 0: reporter [RNTST] Running test my_test... UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_root.svh(579) @ 0: reporter [UVMTOP] UVM testbench topology: ---------------------------------------------------- Name Type Size Value ---------------------------------------------------- uvm_test_top my_test - @1839 compA componentA - @1908 m_put_port uvm_blocking_put_port - @2005 m_subcomp_A subCompA - @1971 m_put_port uvm_blocking_put_port - @2044 compB componentB - @1939 m_put_imp uvm_blocking_put_imp - @2081 ---------------------------------------------------- UVM_INFO testbench.sv(70) @ 0: uvm_test_top.compA.m_subcomp_A [SUBCOMPA] Packet sent to CompB pkt: (Packet@2119) { addr: 'h24 data: 'h31 } UVM_INFO testbench.sv(124) @ 0: uvm_test_top.compB [COMPB] Packet received from subCompA pkt: (Packet@2119) { addr: 'h24 data: 'h31 } UVM_INFO testbench.sv(70) @ 0: uvm_test_top.compA.m_subcomp_A [SUBCOMPA] Packet sent to CompB pkt: (Packet@2133) { addr: 'h9a data: 'hfb } UVM_INFO testbench.sv(124) @ 0: uvm_test_top.compB [COMPB] Packet received from subCompA pkt: (Packet@2133) { addr: 'h9a data: 'hfb } UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_objection.svh(1271) @ 0: reporter [TEST_DONE] 'run' phase is ready to proceed to the 'extract' phase UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_report_server.svh(847) @ 0: reporter [UVM/REPORT/SERVER] --- UVM Report Summary ---
Port to Export to Imp
In this example componentA is the initiator and sends a packet from its port to the destination subCompB which implements the put method. Since componentB is the container for the target, it should have an export to forward the packets received from the connected port at the top level.

// componentA will start transactions and send to its port
class componentA extends uvm_component;
`uvm_component_utils (componentA)
function new (string name = "componentA", uvm_component parent= null);
super.new (name, parent);
endfunction
uvm_blocking_put_port #(Packet) m_put_port;
int m_num_tx=2;
virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);
m_put_port = new ("m_put_port", this);
endfunction
// Create a packet, randomize it and send it through the port
// Note that put() is a method defined by the receiving component
// Repeat these steps N times to send N packets
virtual task run_phase (uvm_phase phase);
phase.raise_objection(this);
repeat (m_num_tx) begin
Packet pkt = Packet::type_id::create ("pkt");
assert(pkt.randomize ());
// Print the packet to be displayed in log
`uvm_info ("SUBCOMPA", "Packet sent to subCompB", UVM_LOW)
pkt.print (uvm_default_line_printer);
// Call the TLM put() method of put_port class and pass packet as argument
m_put_port.put (pkt);
end
phase.drop_objection(this);
endtask
endclass
UVM_INFO @ 0: reporter [RNTST] Running test my_test... UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_root.svh(579) @ 0: reporter [UVMTOP] UVM testbench topology: ------------------------------------------------------ Name Type Size Value ------------------------------------------------------ uvm_test_top my_test - @1839 compA componentA - @1908 m_put_port uvm_blocking_put_port - @1974 compB componentB - @1939 m_put_export uvm_blocking_put_export - @2044 m_subcomp_B subCompB - @2010 m_put_imp uvm_blocking_put_imp - @2081 ------------------------------------------------------ UVM_INFO testbench.sv(73) @ 0: uvm_test_top.compA [SUBCOMPA] Packet sent to subCompB pkt: (Packet@2120) { addr: 'ha1 data: 'h64 } UVM_INFO testbench.sv(127) @ 0: uvm_test_top.compB.m_subcomp_B [SUBCOMPB] Packet received from subCompA pkt: (Packet@2120) { addr: 'ha1 data: 'h64 } UVM_INFO testbench.sv(73) @ 0: uvm_test_top.compA [SUBCOMPA] Packet sent to subCompB pkt: (Packet@2134) { addr: 'hc1 data: 'hb9 } UVM_INFO testbench.sv(127) @ 0: uvm_test_top.compB.m_subcomp_B [SUBCOMPB] Packet received from subCompA pkt: (Packet@2134) { addr: 'hc1 data: 'hb9 } UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_objection.svh(1271) @ 0: reporter [TEST_DONE] 'run' phase is ready to proceed to the 'extract' phase UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_report_server.svh(847) @ 0: reporter [UVM/REPORT/SERVER] --- UVM Report Summary ---
Port to Port to Export to Export to Imp
In this example there is an additional layer between componentB and the target subCompB2 called subCompB1. This layer has to simply forward the packet to the destination and hence shall have an export.

UVM_INFO @ 0: reporter [RNTST] Running test my_test... UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_root.svh(579) @ 0: reporter [UVMTOP] UVM testbench topology: -------------------------------------------------------- Name Type Size Value -------------------------------------------------------- uvm_test_top my_test - @1845 compA componentA - @1914 m_put_port uvm_blocking_put_port - @2011 m_subcomp_A subCompA - @1977 m_put_port uvm_blocking_put_port - @2050 compB componentB - @1945 m_put_export uvm_blocking_put_export - @2118 m_subcomp_B1 subCompB1 - @2084 m_put_export uvm_blocking_put_export - @2186 m_subcomp_B2 subCompB2 - @2152 m_put_imp uvm_blocking_put_imp - @2223 -------------------------------------------------------- UVM_INFO testbench.sv(75) @ 0: uvm_test_top.compA.m_subcomp_A [SUBCOMPA] Packet sent to subCompB pkt: (Packet@2262) { addr: 'h24 data: 'h31 } UVM_INFO testbench.sv(179) @ 0: uvm_test_top.compB.m_subcomp_B1.m_subcomp_B2 [SUBCOMPB2] Packet received from subCompA pkt: (Packet@2262) { addr: 'h24 data: 'h31 } UVM_INFO testbench.sv(75) @ 0: uvm_test_top.compA.m_subcomp_A [SUBCOMPA] Packet sent to subCompB pkt: (Packet@2284) { addr: 'h9a data: 'hfb } UVM_INFO testbench.sv(179) @ 0: uvm_test_top.compB.m_subcomp_B1.m_subcomp_B2 [SUBCOMPB2] Packet received from subCompA pkt: (Packet@2284) { addr: 'h9a data: 'hfb } UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_objection.svh(1271) @ 0: reporter [TEST_DONE] 'run' phase is ready to proceed to the 'extract' phase UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_report_server.svh(847) @ 0: reporter [UVM/REPORT/SERVER] --- UVM Report Summary ---
This is another example of a SystemVerilog testbench using OOP concepts like inheritance, polymorphism to build a functional testbench for a simple design.
Design
module switch
# (parameter ADDR_WIDTH = 8,
parameter DATA_WIDTH = 16,
parameter ADDR_DIV = 8'h3F
)
( input clk,
input rstn,
input vld,
input [ADDR_WIDTH-1:0] addr,
input [DATA_WIDTH-1:0] data,
output reg [ADDR_WIDTH-1:0] addr_a,
output reg [DATA_WIDTH-1:0] data_a,
output reg [ADDR_WIDTH-1:0] addr_b,
output reg [DATA_WIDTH-1:0] data_b
);
always @ (posedge clk) begin
if (!rstn) begin
addr_a <= 0;
data_a <= 0;
addr_b <= 0;
data_b <= 0;
end else begin
if (vld) begin
if (addr >= 0 & addr <= ADDR_DIV) begin
addr_a <= addr;
data_a <= data;
addr_b <= 0;
data_b <= 0;
end else begin
addr_a <= 0;
data_a <= 0;
addr_b <= addr;
data_b <= data;
end
end
end
end
endmodule