image/svg+xml
  • Contents
      • Back
      • Digital Basics
      • Verilog
      • Verification
      • SystemVerilog
      • UVM
Most Popular
Verification
  Testbench Evolution
  Constraint Random Verification
  Verification Techniques
  Verification Plan
  Code Coverage

Verilog
  Data Types
  Basic Constructs
  Behavioral Modeling
  Gate Modeling
  Simulation Basics
  Design Examples

SystemVerilog
  Data Types
  Class
  Interface
  Constraints and more!
  Testbench Examples

UVM
  Sequences
  Testbench Components
  TLM Tutorial
  Register Model Tutorial
  Testbench Examples

Digital Fundamentals
  Binary Arithmetic
  Boolean Logic
  Karnaugh Maps
  Combinational Logic
  Sequential Logic




SystemVerilog Class

What are classes ?

class is a user-defined datatype, an OOP construct, that can be used to encapsulate data (property) and tasks/functions (methods) which operate on the data. Here's an example:


class myPacket;
	bit [2:0]  header;
	bit        encode;
	bit [2:0]  mode;
	bit [7:0]  data;
	bit        stop;
	
	function new (bit [2:0] header = 3'h1, bit [2:0] mode = 5);
		this.header = header;
		this.encode = 0;
		this.mode   = mode;
		this.stop   = 1;
	endfunction
	
	function display ();
		$display ("Header = 0x%0h, Encode = %0b, Mode = 0x%0h, Stop = %0b", 
		           this.header, this.encode, this.mode, this.stop);
	endfunction
endclass

Read more: SystemVerilog Class

SystemVerilog Interface

What is an Interface ?

An Interface is a way to encapsulate signals into a block. All related signals are grouped together to form an interface block so that the same interface can be re-used for other projects. Also it becomes easier to connect with the DUT and other verification components.

Example

APB bus protocol signals are put together in the given interface. Note that signals are declared within interface and endinterface.


interface apb_if (input pclk);
	logic [31:0]    paddr;
	logic [31:0]    pwdata;
	logic [31:0]    prdata;
	logic           penable;
	logic           pwrite;
	logic           psel;
endinterface

Why are signals declared logic ?

logic is a new data type that lets you drive signals of this type via assign statements and in a procedural block. Remember that in verilog, you could drive a reg only in procedural block and a wire only in assign statement. But this is only one reason.

Signals connected to the DUT should support 4-states so that X/Z values can be caught. If these signals were bit then the X/Z would have shown up as 0, and you would have missed that DUT had a X/Z value.

Read more: SystemVerilog Interface

SystemVerilog 'break' and 'continue'

break


module tb;
  	initial begin
      
      // This for loop increments i from 0 to 9 and exit
      for (int i = 0 ; i < 10; i++) begin
        $display ("Iteration [%0d]", i);
        
        // Let's create a condition such that the 
        // for loop exits when i becomes 7
        if (i == 7) 
          break;
      end
    end
endmodule
 Simulation Log
ncsim> run
Iteration [0]
Iteration [1]
Iteration [2]
Iteration [3]
Iteration [4]
Iteration [5]
Iteration [6]
Iteration [7]
ncsim: *W,RNQUIE: Simulation is complete.

continue


module tb;
  	initial begin
      
      // This for loop increments i from 0 to 9 and exit
      for (int i = 0 ; i < 10; i++) begin 
        
        // Let's create a condition such that the 
        // for loop 
        if (i == 7) 
          continue;
        
        $display ("Iteration [%0d]", i);
      end
    end
endmodule	
 Simulation Log
ncsim> run
Iteration [0]
Iteration [1]
Iteration [2]
Iteration [3]
Iteration [4]
Iteration [5]
Iteration [6]
Iteration [8]
Iteration [9]
ncsim: *W,RNQUIE: Simulation is complete.

SystemVerilog Unpacked Arrays

An unpacked array is used to refer to dimensions declared after the variable name.

Unpacked arrays may be fixed-size arrays, dynamic arrays, associative arrays or queues.

Single Dimensional Unpacked Array


module tb;
	byte 	stack [8]; 		// depth = 8, 1 byte wide variable
	
	initial begin
		// Assign random values to each slot of the stack
		foreach (stack[i]) begin
			stack[i] = $random;
			$display ("Assign 0x%0h to index %0d", stack[i], i);
		end
		
		// Print contents of the stack
		$display ("stack = %p", stack);
	end
endmodule
 Simulation Log
Assign 0x24 to index 0
Assign 0x81 to index 1
Assign 0x9 to index 2
Assign 0x63 to index 3
Assign 0xd to index 4
Assign 0x8d to index 5
Assign 0x65 to index 6
Assign 0x12 to index 7
stack = '{'h24, 'h81, 'h9, 'h63, 'hd, 'h8d, 'h65, 'h12}

Multidimensional Unpacked Array


module tb;
  byte 	stack [2][4]; 		// 2 rows, 4 cols
	
	initial begin
		// Assign random values to each slot of the stack
		foreach (stack[i])
          foreach (stack[i][j]) begin
            stack[i][j] = $random;
            $display ("stack[%0d][%0d] = 0x%0h", i, j, stack[i][j]);
			end
		
		// Print contents of the stack
		$display ("stack = %p", stack);
	end
endmodule
 Simulation Log
ncsim> run
stack[0][0] = 0x24
stack[0][1] = 0x81
stack[0][2] = 0x9
stack[0][3] = 0x63
stack[1][0] = 0xd
stack[1][1] = 0x8d
stack[1][2] = 0x65
stack[1][3] = 0x12
stack = '{'{'h24, 'h81, 'h9, 'h63}, '{'hd, 'h8d, 'h65, 'h12}}
ncsim: *W,RNQUIE: Simulation is complete.

Packed + Unpacked Array

The example shown below illustrates a multidimensional packed + unpacked array.


module tb;
  bit [3:0][7:0] 	stack [2][4]; 		// 2 rows, 4 cols
	
	initial begin
		// Assign random values to each slot of the stack
		foreach (stack[i])
          foreach (stack[i][j]) begin
            stack[i][j] = $random;
            $display ("stack[%0d][%0d] = 0x%0h", i, j, stack[i][j]);
			end
		
		// Print contents of the stack
		$display ("stack = %p", stack);
		
		// Print content of a given index
        $display("stack[0][0][2] = 0x%0h", stack[0][0][2]);
	end
endmodule
 Simulation Log
ncsim> run
stack[0][0] = 0x12153524
stack[0][1] = 0xc0895e81
stack[0][2] = 0x8484d609
stack[0][3] = 0xb1f05663
stack[1][0] = 0x6b97b0d
stack[1][1] = 0x46df998d
stack[1][2] = 0xb2c28465
stack[1][3] = 0x89375212
stack = '{'{'h12153524, 'hc0895e81, 'h8484d609, 'hb1f05663}, '{'h6b97b0d, 'h46df998d, 'hb2c28465, 'h89375212}}
stack[0][0][2] = 0x15
ncsim: *W,RNQUIE: Simulation is complete.

In a multidimensional declaration, the dimensions declared before the name vary more faster than the dimensions following the name.


bit 	[1:4] 		m_var 	[1:5]			// 1:4 varies faster than 1:5 
bit 				m_var2 	[1:5] [1:3]  	// 1:3 varies faster than 1:5
bit 	[1:3] [1:7] m_var3; 				// 1:7 varies faster than 1:3

bit 	[1:3] [1:2] m_var4 [1:7] [0:2] 		// 1:2 varies most rapidly, followed by 1:3, then 0:2 and then 1:7

UVM Object Pack/Unpack

  1. Using automation macros
    1. Pack
    2. Unpack
  2. Using do_pack/do_unpack

UVM automation macros also include mechanisms to pack class variables into a bit or byte stream, and unpack a bit stream and populate the class contents. This is particularly useful when dealing with serial forms of communication like SPI, I2C and RS-232.

There are three main functions available to pack and unpack.

MethodDescription
packPerforms a bit-wise concatenation of the class contents into an array of type bit
pack_bytesPerforms a bit-wise concatenation of the class contents into an array of type byte
pack_intsPerforms a bit-wise concatenation of the class contents into an array of type int
unpackExtracts property values from an array of type bit and stores into correct class variable
unpack_bytesExtracts property values from an array of type byte and stores into correct class variable
unpack_intsExtracts property values from an array of type int and stores into correct class variable

In the following examples, usage of all the three types of functions will be explored.

Using automation macros

Pack

A class called Packet is defined with some variables to store address and data, and is registered with `uvm_field_int macros to enable automation. UVM_DEFAULT specifies that all the default automation methods should be applied to the given variable.

Note that the order of variables as listed within `uvm_object_utils_* will be used for both packing and unpacking data.


class Packet extends uvm_object;
  rand bit [3:0] m_addr;
  rand bit [3:0] m_wdata;
  rand bit [3:0] m_rdata;
  rand bit 		 m_wr;
  
  `uvm_object_utils_begin(Packet)
  	`uvm_field_int(m_addr, 	UVM_DEFAULT)
  	`uvm_field_int(m_wdata, UVM_DEFAULT)
  	`uvm_field_int(m_rdata, UVM_DEFAULT)
  	`uvm_field_int(m_wr,		UVM_DEFAULT)
  `uvm_object_utils_end
  
  function new(string name = "Packet");
    super.new(name);
  endfunction
endclass

Let us create a test class called pack_test where an object of Packet is created, randomized and packed.


class pack_test extends uvm_test;
  `uvm_component_utils(pack_test)
  function new(string name = "pack_test", uvm_component parent=null);
    super.new(name, parent);
  endfunction
  
  // Declare some arrays to store packed data output from different pack functions
  bit 						m_bits[];
  byte unsigned		m_bytes[];
  int  unsigned		m_ints[];
  
  virtual function void build_phase(uvm_phase phase);
  
  	// First create an object of class "Packet", randomize and print its contents
    Packet m_pkt = Packet::type_id::create("Packet");
    m_pkt.randomize();
    m_pkt.print();
    
    // Now, call "pack", "pack_bytes", and "pack_ints" and pass appropriate array type
    m_pkt.pack(m_bits);
    m_pkt.pack_bytes(m_bytes);
    m_pkt.pack_ints(m_ints); 
    
    // Print the array contents
    `uvm_info(get_type_name(), $sformatf("m_bits=%p", m_bits), UVM_LOW)
    `uvm_info(get_type_name(), $sformatf("m_bytes=%p", m_bytes), UVM_LOW)
    `uvm_info(get_type_name(), $sformatf("m_ints=%p", m_ints), UVM_LOW)
  endfunction
endclass

module tb;
	initial begin
		run_test("pack_test");
	end
endmodule

See that the function pack returned an array of bits, pack_bytes returned an array of bytes and pack_ints returned an array of ints. Note that pack_bytes padded 0 to the content from m_wr to turn it from 1 to 8.

 Simulation Log
UVM_INFO @ 0: reporter [RNTST] Running test pack_test...
--------------------------------
Name       Type      Size  Value
--------------------------------
Packet     Packet    -     @1907
  m_addr   integral  4     'hd  
  m_wdata  integral  4     'h9  
  m_rdata  integral  4     'h6  
  m_wr     integral  1     'h1  
--------------------------------
UVM_INFO testbench.sv(74) @ 0: uvm_test_top [pack_test] m_bits='{'h1, 'h1, 'h0, 'h1, 'h1, 'h0, 'h0, 'h1, 'h0, 'h1, 'h1, 'h0, 'h1}
UVM_INFO testbench.sv(75) @ 0: uvm_test_top [pack_test] m_bytes='{'hd9, 'h68}
UVM_INFO testbench.sv(76) @ 0: uvm_test_top [pack_test] m_ints='{3647471616}
UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_report_server.svh(847) @ 0: reporter [UVM/REPORT/SERVER] 

Unpack

Let us create a different test class called unpack_test which will create two Packet objects, but randomize only one of them leaving the other empty. Then pack contents of the first object into an array, and then unpack it into the second object and display its contents. Repeat the same thing with other types of pack functions.


class unpack_test extends uvm_test;
  `uvm_component_utils(unpack_test)
  function new(string name = "unpack_test", uvm_component parent=null);
    super.new(name, parent);
  endfunction
  
  // Declare a few arrays to hold packed data for each type of "pack" function
  bit 					m_bits[];
  byte unsigned	m_bytes[];
  int  unsigned	m_ints[];
  
  // Variables to hold return value from pack function
  int m_val1, m_val2, m_val3;
  
  virtual function void build_phase(uvm_phase phase);
    Packet m_pkt = Packet::type_id::create("Packet");
    Packet m_pkt2 = Packet::type_id::create("Packet");
    
    `uvm_info(get_type_name(), $sformatf("Start pack"), UVM_LOW)
    // Randomize the first object, print and pack into bit array, then display
    m_pkt.randomize();
    m_pkt.print();
    m_pkt.pack(m_bits);
    `uvm_info(get_type_name(), $sformatf("packed m_bits=%p", m_bits), UVM_LOW)
    
    // Randomize the first object, print and pack into byte array, then display
    m_pkt.randomize();
    m_pkt.print();
    m_pkt.pack_bytes(m_bytes);
    `uvm_info(get_type_name(), $sformatf("packed m_bytes=%p", m_bytes), UVM_LOW)
    
    // Randomize the first object, print and pack into int array, then display
    m_pkt.randomize();
    m_pkt.print();
    m_pkt.pack_ints(m_ints); 
    `uvm_info(get_type_name(), $sformatf("packed m_ints=%p", m_ints), UVM_LOW)
    
    `uvm_info(get_type_name(), $sformatf("Start unpack"), UVM_LOW)
    // Now unpack the packed bit array into the second object, and display
    m_val1 = m_pkt2.unpack(m_bits);
    `uvm_info(get_type_name(), $sformatf("unpacked m_val1=0x%0h", m_val1), UVM_LOW)
    m_pkt2.print();
    
    // Now unpack the packed byte array into the second object, and display
    m_val2 = m_pkt2.unpack_bytes(m_bytes);
    `uvm_info(get_type_name(), $sformatf("unpacked m_val2=0x%0h", m_val2), UVM_LOW)
    m_pkt2.print();
    
    // Now unpack the packed int array into the second object, and display
    m_val3 = m_pkt2.unpack_ints(m_ints);
    `uvm_info(get_type_name(), $sformatf("unpacked m_val3=0x%0h", m_val3), UVM_LOW)
    m_pkt2.print();
  endfunction
endclass

module tb;
	initial begin
		run_test("unpack_test");
	end
endmodule

Remember that the order in which it is packed should be same as the order in which it is unpacked. Any change in packer policy regarding order may cause the results to be different.

 Simulation Log
UVM_INFO @ 0: reporter [RNTST] Running test unpack_test...
UVM_INFO testbench.sv(93) @ 0: uvm_test_top [unpack_test] Start pack
--------------------------------
Name       Type      Size  Value
--------------------------------
Packet     Packet    -     @1907
  m_addr   integral  4     'hd  
  m_wdata  integral  4     'h9  
  m_rdata  integral  4     'h6  
  m_wr     integral  1     'h1  
--------------------------------
UVM_INFO testbench.sv(95) @ 0: uvm_test_top [unpack_test] packed m_bits='{'h1, 'h1, 'h0, 'h1, 'h1, 'h0, 'h0, 'h1, 'h0, 'h1, 'h1, 'h0, 'h1}
--------------------------------
Name       Type      Size  Value
--------------------------------
Packet     Packet    -     @1907
  m_addr   integral  4     'h8  
  m_wdata  integral  4     'he  
  m_rdata  integral  4     'h4  
  m_wr     integral  1     'h0  
--------------------------------
UVM_INFO testbench.sv(100) @ 0: uvm_test_top [unpack_test] packed m_bytes='{'h8e, 'h40}
--------------------------------
Name       Type      Size  Value
--------------------------------
Packet     Packet    -     @1907
  m_addr   integral  4     'h9  
  m_wdata  integral  4     'he  
  m_rdata  integral  4     'he  
  m_wr     integral  1     'h1  
--------------------------------
UVM_INFO testbench.sv(105) @ 0: uvm_test_top [unpack_test] packed m_ints='{2666004480}
UVM_INFO testbench.sv(109) @ 0: uvm_test_top [unpack_test] Start unpack
UVM_INFO testbench.sv(109) @ 0: uvm_test_top [unpack_test] unpacked m_val1=0xd
--------------------------------
Name       Type      Size  Value
--------------------------------
Packet     Packet    -     @1909
  m_addr   integral  4     'hd  
  m_wdata  integral  4     'h9  
  m_rdata  integral  4     'h6  
  m_wr     integral  1     'h1  
--------------------------------
UVM_INFO testbench.sv(113) @ 0: uvm_test_top [unpack_test] unpacked m_val2=0xd
--------------------------------
Name       Type      Size  Value
--------------------------------
Packet     Packet    -     @1909
  m_addr   integral  4     'h8  
  m_wdata  integral  4     'he  
  m_rdata  integral  4     'h4  
  m_wr     integral  1     'h0  
--------------------------------
UVM_INFO testbench.sv(117) @ 0: uvm_test_top [unpack_test] unpacked m_val3=0xd
--------------------------------
Name       Type      Size  Value
--------------------------------
Packet     Packet    -     @1909
  m_addr   integral  4     'h9  
  m_wdata  integral  4     'he  
  m_rdata  integral  4     'he  
  m_wr     integral  1     'h1  
--------------------------------
UVM_INFO /playground_lib/uvm-1.2/src/base/uvm_report_server.svh(847) @ 0: reporter [UVM/REPORT/SERVER]

Automation macros introduce a lot of new code and is not generally recommemded to be used

Using do_pack/do_unpack

Just like print, copy and compare, pack and unpack also has user definable hooks called do_pack and do_unpack.


class Packet extends uvm_object;
  rand bit [3:0] m_addr;
  rand bit [3:0] m_wdata;
  rand bit [3:0] m_rdata;
  rand bit 		 m_wr;
  
  `uvm_object_utils(Packet)
  
  // Define do_print, so that print method displays contents of this class
  virtual function void do_print(uvm_printer printer);
    super.do_print(printer);
    printer.print_field_int("m_addr", m_addr, $bits(m_addr), UVM_HEX);
    printer.print_field_int("m_wdata", m_wdata, $bits(m_wdata), UVM_HEX);
    printer.print_field_int("m_rdata", m_rdata, $bits(m_rdata), UVM_HEX);
    printer.print_field_int("m_wr", m_wr, $bits(m_wr), UVM_HEX);
  endfunction
  
  virtual function void do_pack(uvm_packer packer);
    super.do_pack(packer);
    packer.pack_field_int(m_addr, $bits(m_addr));
    packer.pack_field_int(m_wdata, $bits(m_wdata));
    packer.pack_field_int(m_rdata, $bits(m_rdata));
                          packer.pack_field_int(m_wr, $bits(m_wr));                                            
  endfunction
                          
  virtual function void do_unpack(uvm_packer packer);
    super.do_pack(packer);
    m_addr = packer.unpack_field_int($bits(m_addr));
    m_wdata = packer.unpack_field_int($bits(m_wdata));
    m_rdata = packer.unpack_field_int($bits(m_rdata));
                                      m_wr = packer.unpack_field_int($bits(m_wr));                                            
  endfunction
  
  function new(string name = "Packet");
    super.new(name);
  endfunction
endclass

The same set of tests shown above can be run with this class and will yield the same results.

  1. UVM utility & field macros
  2. UVM Tutorial
  3. SystemVerilog Constraint 'inside'
  4. Combinational Logic with assign
  5. UVM Register Backdoor Access

Page 55 of 63

  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
Interview Questions
  Verilog Interview Set 1
  Verilog Interview Set 2
  Verilog Interview Set 3
  Verilog Interview Set 4
  Verilog Interview Set 5

  SystemVerilog Interview Set 1
  SystemVerilog Interview Set 2
  SystemVerilog Interview Set 3
  SystemVerilog Interview Set 4
  SystemVerilog Interview Set 5

  UVM Interview Set 1
  UVM Interview Set 2
  UVM Interview Set 3
  UVM Interview Set 4
Related Topics
  Digital Fundamentals
  Verilog Tutorial

  Verification
  SystemVerilog Tutorial
  UVM Tutorial
  • Verilog Testbench
  • Verilog Coding Style Effect
  • Verilog Conditional Statements
  • Verilog Interview Set 10
  • Synchronous FIFO
  • SystemVerilog Interview Set 10
  • SystemVerilog Interview Set 9
  • SystemVerilog Interview Set 8
  • SystemVerilog Interview Set 7
  • SystemVerilog Interview Set 6
  • UVM Singleton Object
  • UVM Component [uvm_component]
  • UVM Object [uvm_object]
  • UVM Root [uvm_root]
  • UVM Interview Set 4
© 2015 - 2023 ChipVerify
Terms and Conditions | DMCA.com Protection Status